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Cholesteric elastomers: Deformable photonic solids
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A mechanical strain applied to a monodomain cholesteric elastomer modulates and eventually unwinds the
helical director distribution. There are similarities with the classical problem of an electric field applied to a
cholesteric liquid crystal, but also differences. Frank elasticity is of minor importance unless the gel is very
weak. The interplay is rather between the director being helically anchored to the rubber elastic matrix and the
external mechanical field. Stretching perpendicular to the helix axis induces the uniform unwound state via the
elimination of sharp, pinned twist walls above a critical strain. Below the critical strain the coarsening of the
director distribution is not accompanied by an increase but rather by an affine decrease in the pitch. Unwinding
through conical director states occurs when the elastomer is stretched along the helical axis. Finally we
consider cholesteric elastomers in a classical device geometry with an electric field applied along the pitch axis
and hence transverse to the director orientation.
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[. INTRODUCTION examine two specific cases of imposed uniaxial extengipn:
transverse deformation,,=\, in the plane includingng,

Monodomain cholesteric elastomers are formed byand (ii) longitudinal deformation along the helix axis
crosslinking mesogenic chiral polymers in the cholesterick,,=\.
state with a properly formed helical director twist. The sub- The symmetry obvious from Fig. 1 requires that in the
sequent retention of the helical state as an elastic equilibriurnase(i) the director remains in the-y plane, characterized
[1] is a natural topological consequence of textures containebly the azimuthal anglé(z), while in the caseii) one may
within the crosslinked network, seen in a number of otherexpect a conical texture witm(z) inclined towards the
elastomers with liquid crystalline order and other microstruc-stretching axiz and therefore described by two angteand
ture. Symmetrical biaxial extension, applied to a sample filmg (cf. Fig. 4). In ordinary liquid cholesterics subjected to,
in the process of crosslinking, aligns the director uniformlye.g., a magnetic fielth,, such conical states are not gener-
in the film plane, and thus the cholesteric helix axis along theally seen, preempted by the 90° switching of the helix axis
sample normal2]. The more subtle imprinting rouf8] to  and then untwisting in the “transverse” geomefri4,15.
achieving chiral elastomers without material of intrinsic We shall see that in elastomers, due to the director anchor-
chirality have been demonstrat¢d] and theoretically de- ing, this regime is not possible and the conical director con-
scribed[5]. figurations should occur.

Such elastomers combine all the optical properties of An elastic material with a microstructure represented by
twisted nematic liquids with the remarkable mechanicalan independently mobile director orientation is analogous to
characteristics of rubbers, and there are important device afGosserat media. In the limit of linear elasticity the relative
plications such as color display$,7], a chiral pump for rotation coupling between the director rotatian=[nx én]
sorting racemic solventf8], memory storag¢9] and even  and the antisymmetric part of straif};= ;e (with sum-
lasing[10,11]. Thanks to the one dimension@dD) photonic  mation conventiop
gap arising from its helical structure, an elastomer laser re-
quires no mirrors to create a cavity and has a very low lasing 1D NX(Q—w)]?+D,n-e® . [nX(Q—w)], (1)
threshold. Furthermore, it exhibits strong optomechanical
coupling, with the laser color depending sensitively on thehas been first written down phenomenologically by de
strain applied. Such a mechanically tunable laser coul@senneg16], £ being the symmetric part of the small strain
hugely benefit optical fiber communication. It is thereforedefined ass=\— §. The deformation tensox is related to
important to consider the mechanical possibilities of suchhe displacement vectar(r) via )
solids with a helical microstructure. We expect new transi-
tions and instabilities characteristic of liquid crystalline elas- Nij=Vu;,
tomerg[12]. There is some experimental evidef2el 3] that
such effects are indeed observable and our hope is that thighere subscripts andj refer tox, y, andz. The symmetry-
theoretical work will stimulate more studies in this field. based expressiofil) is only valid for small deformations,

having only linear and quadratic terms in the local relative
Il. MECHANICAL DEFORMATION rotation. o . .
The microscopic statistical-mechanical theory of nematic

Consider a monodomain cholesteric elastomer with amubber elasticity, summarized in R¢fL7], obtains a frame-
ideal helically twisted directong(z) in the x-y plane, ini- independent generalization of the classical rubber-elastic en-
tially making anglesy= gz with thex axis, Fig. 1. We shall ergy density,

1063-651X/2001/641)/0418038)/$20.00 64 041803-1 ©2001 The American Physical Society



Y. MAO, E. M. TERENTJEV, AND M. WARNER PHYSICAL REVIEW E64 041803

z X

FIG. 1. The initial director
¢ No(2) in a cholesteric helix makes

b NN an azimuthal angleby=qyz with

y ¢ X %@f P ﬁf & the x axis; the helical pitch i
- (% o " vyl 1Y | JL i =7/q,. Two principal directions

s XX & / ) z of mechanical deformationa)
ey <'|/ > 4 <‘L'7__/:> Ay and(b) \,,, are shown by ar-

(a) (b) rows.
F=3pTr(£o-A"-/ 1)), (2)  of the directom to the rubbery matrix, described by @),

tends to dominate over Frank elasticity effects.
plus the constraint of material incompressibility, expressed We shall assume that a cholesteric elastomer is locally
by the condition de®() =1, on the strain tensor. Apart from like a nematic in its elastic response: rubber elasticity is de-

the strain, the other entries in E@) are termined on the scale of network crosslink separatiarfew
nanometens whereas cholesteric pitches are®16mes
ZLo=118+ (/=71 )ngng, longer. We can at once see why the chiral structure is stable
1 ) , , but how mechanical fields can destabilize it. With no elastic
L=/ ) e+ (A =17 )nn, () strain, the free-energy penalty isD(h— ¢g)? for rotat-

h duced sh di h h __ing the director away from its original helical textukg,
the reduced shape and inverse shape tensors ¢ araCte”Z@%Oz. On the other hand, if strains are applied, the rubber

the Gaussian distribution of nematic polymer chains befor%an lower its elastic energf2) by rotating the directon

and after the distortiorh. The rubber shear modulug 4\ ards the axis of principal extension. This general prin-

=nskgT (with ns the number density of network strands, gjyje of adjusting the microstructure to minimize the elastic
proportional to the crosslink densjtis that characteristic of energy is seen in its ultimate form in the effect of soft elas-

the underlying isotropic rubber and sets the energy scale QTcity [17,18, when a stretched nematic rubber may reduce
distortions. The free-energy densi®) is known to be valid Q

| : : ; h hani its effective modulugthe slope of a stress-strain cuyve
up to large strains and correctly predicts the optomechanicgly;q py ontimizing the director rotation and associated shear
responses and the soft elasticity of nematic elastomers. Thg ..o

free-energyF is a function only_ of the chain anisotropy Distortions in a cholesteric elastomer cannot be soft, be-
=717, the ratio of the effective step lengths parallel and_ ;se of elastic compatibility constrairsee Sec. A of the
perpendicular to the director. It is an independently meas“reﬂppendix for more detailsin matching different director
parameter accessible from neutron scattering or from Spony,g shear modes along the helix. Essentially, the soft modes
taneous mechanical distortions on going from the nematic tﬂepend on the director orientatiogig, which vary according
isotropic phase. Unless there is a large nematic order changg position. This variation gives rise to a shegy, that di-
induced by}, the shape’ is essentially just a rotated version yerqes as the linear dimension of the sample. We accord-
of /o, a uniaxial ellipsoid with the long axig@tr>1) ori- gy take transverse contractions to lgiform Such defor-
ented alongn instead ofng. _ mations, e.g.\,x and\,, for stretching along the helix axis
Embedded in the general expressi@nis the penalty for z have to be equal by symmetry and therefarg=\
!ocal director deviations frpm the orientation _imprinFed =1/y\, the classical forms. In contrast, for stretchingyper-
into the network' at formanon. When no elastic strains arependicular to the helix, the transverse contractians and
allowed, A = 2, this elastic energy reduces to \yy should not be symmetric since one of them is along and
the other perpendicular to the coarse-grained principal axis
Sir? 0, (4) of the helix,z. Indeed, we shall find nonclassical exponents
of 2/7 and 5/7 for these relaxations. The incompressibility
constraint maintains the relation, Ay, =1/\.

F_3 . 1 (r—1)°
T KT oM

where® is the local angle betweenandn,. The sirf® term
degcribes the ar_lchoring towards_th_e originall dire.ct.or orign— IIl. TRANSVERSE ELONGATION

tation. The elastic penalty for deviating from its original ori-

entation, appropriately proportional to the square of chain We first consider an imposed stretch in the transverse di-
anisotropy, gives the coefficiel; of the de Gennes’ phe- rection perpendicular to the pitch axis.,=\. The strain
nomenological expression at small deformations, Bg.  tensor is then in the following form:

This has to be compared with the Frank elastic penalty for

director curvature deformationgK (Vn)2. The length scale A0 0
&~ (1l —1)yK/u at which the two energy contributions are A= 0 Ay O |, (5)

comparable is usually smalE~10"8 m for a typical K 0 0 A

~10 1 Jmu~10° I/n? and not too small anisotropy:. “

This is rather less than the cholesteric pifghwhich is a  Although one expects the director rotation in the azimuthal
characteristic scale in our problem. Therefore the anchoringlanex-y (cf. Fig. 1), there are no associated shear strains.
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Such shears),,(z) and\,(z), would both lead to elastic ! ' ' , , 3:14 P g
compatibility problems, see the Appendix, and we assume 236 | ‘

they are suppressed. The sherfs(z) and \,,(z) are not  osf NP S ]
subject to compatibility requirements. However, they should LA ' S\

not appear on symmetry grounds, which is easily confirmedos | N /> ’

by direct minimization. Nowng={cosdy,sin¢,,0} and the 0P e
rotated director after deformation is={cosp,sin¢,0}. Note  ,; L el ; VA 57 ‘ i .

that the helix is¢o=qoz in the initial undistorted material. i W e W LS ST T
After deformation, because of the uniform affine contraction @ ®) Sl I g2 {rsihang

\,,, the material frame shrinks and the effective helical pittch 5 > (a) The transverse contractior, as a function of im-
.2, v

becomesy=qo/\,, in all expressions below. Th€; and/  posed\,,=\. Solid line shows the exact numerical solution of the

implied by theseny andn via equation(3), take the forms  coarse-graining problem far=1.9; one can see the kink where the
discontinuous transition at,=r?’~1.2 takes place. The dashed
line is an interpolation byxyy:)\’?”“, two thin lines show classical

2 2
lisotljicg  (Iy=1.) SoCo O regimes of\,,=1/y/A and 1k. (b) The director angle against the

/;0: (I - 1,)SoCo |HSS+ lLCS 0 (6) cholest_enc helix phasg,z for increasing strain.=1 (open circle,
1.15 (triangle), 1.23 (open square 1.25 (shaded squayeand 1.5
0 0 I (shaded circle At A=\, the director pinning atp=w/2 breaks

down and a discontinuous transition occurs, after which the director

and continuously rotates towards the final unifor=0.

 (r+1)>2 T r—1 (=2
— - +

42
4 r Ayyh r

IIlSZ"_IH_lCz (IH—l_IIl)SC 0
/7= (It =10hse It 0 |, (@)
0 0 I

d¢og=0, (10

where details of the derivation and the definitiongohave
wherec, ands, are shorthand for ca@s and sinpy; analo- been relegated to Sec. C of the Appendix. Equa(ii can

gously,c ands stand for cog and sinp. Substitution of the NOW be solved numerically, and the solution of opting)

above three equations into the free-energy der(@tythen is plotted in Fig. 2a). This variation is contrasted with two
yields classical regimes—an isotropic 3D contractieri/yA and

its 2D equivalent-1/\ (corresponding to a frozen,,=1).
From the plot it is apparent that a good fit is achieved by a
Fl=l,u, N2 N2 4 N2t E[)\z(r 0252 c2s2) power law\,,~\ "3 (and, as a consequence,,~\ ),
2 wers for the imposed strain below the critical valuex ;=r?”,
when a discontinuous jump in the distribution of director
+)\§y(r c?s5—s%c) — 2\ Ayy(r—1)seCosc]|. (8)  angles occurs, see Figi®? and also the kiqk iy (N), Fig.l
2(a). The critical valuex.=r?" can be estimated by setting
the denominator in equatiof®) to zero and taking\,,
The appearance of terms linear and quadrati ifor rather =X"%4 In fact, a small strain expansidin A—1<1) can
in sing because all values of the azimuthal angle will bebe made, and it can be shown analyticall] that the re-
found along the cholesteric heliindicate that rotations can laxation initially varies as\y,=\ """ andx,,=\ %",
always lower the energy for# 1. Incompressibility requires Initially, all directors at O<az< /2 (first helical half-
AyyA ;= 1/\. Minimization of F, with respect to the current turn) are induced to rotate “backward” towards=0, and
director orientationg results in the expression for the local 4| girectors at— 7m/2<gz<0 (second helical half-tunro-
director angle(z) at a given imposed extensiondepend-  ate “forward” towards ¢= 1, as the imposed deformation
ing on the initial phase of cholesteric heli%, \ increases, see Fig(l®. Although ¢=0 and 7 describe
equivalent directors, the twist wall separating these two
states becomes sharper and sharper. Due to the helix imprint-
ing, the orientationgh=0 atqz=0 and¢= atqz= are
pinned, as is the middle point of the twist wall gt= /2.
©  aAsa result, no change of the helical pitch apart from the
affine contractiorﬁzqo/)\ZZ can occur. This is in contrast
Substituting this director profile intd-, gives the free- with cholesteric liquid crystals, where in a classical problem
energy density after director rotation. The total free energyof helix unwinding by electric or magnetic field one finds an
then needs to be optimized with respect to the transversiacrease in cholesteric pitdii4,15 along with coarsening of
contraction\, . This leads to the helix.

2N\\yy(r—=1)sin 2¢,
(r=1)(N2+\J))cos 2po+ (r+1)(N2=\7))

tan 2¢=
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0.35- = r nematic director and are therefore smaller by at least a
03_5 factor of qpa~10 4, wherea is a molecular length of the
i : order of A.
3. 0.25 :
o) . 2; . ’ IV. STRETCHING ALONG THE PITCH AXIS
% i 15_; Having considered the_ mater_ial response under a stretch
&= e & ; perpendicular to the helical axis, we now turn our atten-
“ 0.1 /. 3 tion to the case ofcf. Fig. 1) an imposed stretch along the
] : helical pitch axis\,,=\. The deformation tensor takes the
0.057 2 form of
0-""I""I""I""I""I""_
1 105 11 115 12 125 13 WL 00 g
strain A XX A= 0 1/\/X Nyz (11
0 0 N

FIG. 3. The nominal stress vs strain relation for a transverse
elongation,r = 1.3 (dashed lingandr = 1.9 (solid line). No compatibility problem with shears,(z) and \,(2)

arises from their variation wittz along the helical pitch.

Examining Eq.(9), one finds that as the increasing ap- By contrast, their conjugate strains,, and \,,, which
plied strain reaches a critical valag, the width of the twist ~ would also have to vary witl, lead to a serious compatibil-
wall, centered atjz= /2 between the valueg= /4 and ity mismatch, e.g.g\,/dz=9\,,/Ix. We thergfore deduc.e
3w/4, decreases to zero and the discontinuous transfh@tA;xandh,, are suppressed even though in other settings
tion occurs. The director in the midpoint of the wall breaks[17] these are the generators of soft elastic response. Con-
away from the pinning and jumps from= /2 to ¢=0, celvab!y,)\xy and\, could exist, but th_at seems unlikely as
along the strain axis, thus removing the topologically con-numerical tests would suggesiee Section B of the Appen-
strained twist wall. From this point there is no barrier for dix). . )
director rotation towards the final uniform orientation with N this geometry one expects the director to rotatesby
$=0, as the last two curves in Fig(i#l indicate. The role of ©0ut of the azimuthak-y plane, see Fig. @. The initial
Frank elasticity is discussed at the end. director orientation is, as before,={cosq ¢zsinqez0},

A discontinuous director jump at a critical strain has beenhile after deformation the rotated director is aligned along
predicted, and indeed observed in nematic elastomerthe surface of a conel={cosécosgz,cosésingzsinb}. As
stretched at exactly 90° to their initial directog [17,20. In  in the case of a transverse stretgirevious section all
a stretched cholesteric, one always finds an exact phase angibysical dimensions in the deformed sample are scaled by
¢=m/2 along the helix—where the center of narrowing the affine strain. In particular, he®—\z, resulting in the
twist wall becomes pinned from both sides. It is this pointcorresponding expansion of the cholesteric piigh,gq /.
that experiences a discontinuous jump. Thyss an upper  With the /, and/ defined by the axes, andn, the free-
bound on the stability and the transition. The point of equalenergy density(2) now becomes a function of three vari-
ity of the free energies of the system with and without twistables: the director tilt angl@) and the two shear strains

walls occur at a slightly lowek <\..
The corresponding stress-strain,(\) relations can be
obtained by differentiating the energy, E®), with respect

AA2) and\y(2z) (we continue to neglect the effects of di-
rector gradients and Frank elastigityAlgebraic minimiza-
tion over these components of strain tensor is not difficult.

to A, and the results are plotted in Fig. 3. We can see that th@ithout loss of generality, we takgoz=gz=0 (all other

stress exhibit_s a dip corresponding to the k_ink i_n the transyg es ofqez are related by rotational symmelrithen we
verse relaxation. If a controlled-stress device is used, thﬁave

material will undergo a sudden jump in length Xat\..

This mechanical instability would be accompanied by the Zp 0 0
discontinuous jump in the nematic director orientations, ) 0o / 0
which could be monitored optically. Zo= T (12
There exists of course intrinsically chiral-elastic coupling, 0o 0 /7,
such as terms of the typan-g(.[VXn], introduced by
Terentjev[21], Eqg. (5). These involvederivativesof the  and
|
/itsifo+/tcos 0 0 (/[ =/ singcose
(= 0 7t 0 , (13

(/' =7/Thsingcoss 0  /jtsifo+/ T cos o

041803-4



CHOLESTERIC ELASTOMERS: DEFORMABE . . .

PHYSICAL REVIEW E 64 041803

X 1.6 G(X) 0.8 4

. 14 F ] ’o' E
b-q,z @ 12 0.7 4 S
et N\ A 1 0.6 <k
\\ /" P! zz os b E_ -0 "o F
y) | = 06 F : ; © 05 2
N/ 04 F : J 7)) ] . L
Y Py )] E A 04 e 2
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(a) 1 11 12 13 14 15 16 w2 s
(b strain A, 0.2 4 o E
FIG. 4. (@) The geometry of director rotation in response to ael ' '

stretching\ ,, along the helix axis(b) The angled of director tilt 0 =11
plotted against the imposed strain Eq. (18), for r =1.3 (triangle 1 1.1 1.2 13 14 15 16

andr=1.9 (circle). Strain varies from 1 ta.,=r? at which point

the alignment i9= /2, uniformly along the former pitch axis. strain A XX

FIG. 5. The nominal stress vs strain relation for a stretch along

giving rise to a free-energy density the pitch axisy = 1.3 (dashed linpandr=1.9 (solid line).

r sin? 6+co< 6+1
A

1

Fl=5u The director rotation starts and ends in a characteristically
2

singular fashion, Fig. @) (reminiscent of the universal op-
} tomechanical response seen in soft nematic elastgr2gfs

2
+Ay,

1
+ )\2<Fsin2 6+co< 6

The rotation is complete, with the director aligned along the
extension axis §=/2) at \=r%3, which for some elas-
tomers, can be a very large extension.

The corresponding stress-strain plots are shown in Fig. 5.
The material hardens significantly after reaching which
reflects the fact that the material no longer has the freedom to
rotate its director in its attempt to lower free energy.

1
Sito+ Fcosza

1
+ ZAXZA( o 1) sin 6 cosf+\2,

(14)

Optimizing for the shears,, and\, gives

(r—1)sin26

A=A (r+1)—(r—21)cos 29’ Myz

=0.

V. EFFECT OF AN AXIAL ELECTRIC FIELD
This represents a strain made up of displacements in the
direction ofn projected into thex-y plane and varying with
z. Generalizing to thej,z# 0 case, we have

It has been reported that an electric field applied along the
pitch axis can have a similar effect of reorienting the director
towards the pitch axis; a history-dependent critical field is
required and this effect can be utilized to make data storage
media[9]. Moreover, the recoveredE=0) state is mon-
odomain, in contrast to those commonly found for liquid
cholesterics. This is also an easily accessible experimental
in phase with the azimuthal angle along the helical pitchgeometry, since the initial director is in the plane of a flat
Equation(15) describes the variation of distortions within ~sample film, with the helical axis and the applied field along
the x-y plane in the direction of the initial directar, and  the sample normal. An electric voltaye applied across the
perpendicular to the helix axis. On substitution of these opsample of thicknesd =\d,, adds an extra term to the free-
timal shears back into the free-energy density one obtains energy equatiori16),

sz) N (r—=1)sin2¢ ( c0sqz

Ny, 2r+1-(r—1)cos2¥ sinqz)

1 V2

1 .
Fe=——=A€eey—5—>SiF 6,
). (16) E 2 0)\2d(2)

Fil=zu 19

A2 Jr2+(r—1)sin20
1+(r—1)sir’ 0 A

F| expands at small tilt anglé as whereAe is the differential dielectric constant. So we have

(17 1 A2 2+(r—1)sirf 0

_ _ _ e T nsite N
that is, the director starts to rotate down to define a cone of
semianglew/2— 6 immediately as the strain>1 is im- 1 z
posed. The equilibrium director tilt is obtained by minimiza- - §A“0)\2_d(2)3'n2 9.
tion of the full free-energy densitlf(6),

A3 1 , \/WZTJ_
o f=arcsim\/———.

Fi= 3w\ +2\) =31 62(r —1)(N2—1IN),

(20)

It is clear that the electric field alters the coefficient of the
sinfd term, and the tilt angle after minimizing the free energy

sir? 9= ;
is now

(18
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FIG. 6. A cholesteric elas-
tomer in an electric optic device
geometry. Director orientation
sirfgis shown as a function of an-
isotropy r and reduced electric
field 8. The reduced electric field
required to complet@ rotation to
w2 is given byB=1—r"2,

<

e

A~

/,/ j - C% ]
=0

‘s

<

NIN-pB)—1 cerned with the rotatory-mechanical effects of our earlier

Sirf 9= — , (21)  section for reasons that have been explored by Rgfs,24.

with B=(AeeoV2)/(r—1)ud3 and is to be determined by
boundary and minimization conditions. If no field is applied, VI. DISCUSSION
B=0, we retrieve equatio(iL8) of the previous section. The

ggﬂfﬂfﬁﬂ?ﬁ t?eeizﬁzzctg?]iggt? (c;t Ofeﬁgrapﬂ'f)d eIecmchave altogether ignored effects of Frank elastic energy. The
by AR most compelling evidence for this is the very stability of the

We discuss the two following cases: a clamped elastomer . . .
seu W wing P mprinted helical state in the face of the Frank penalty

wherex=\,,=1 is enforced, and a free-standin elastomer : . )
where electzrzodes are painted on andan relax. 9 1K,q3. The argument for this relies upon the great differ-
(i) In the clamped case, there is no deformatios; 1, we ence in characteristic length scales, the elastomer penetration

have depth, more accurately expressedédef. Eq. (4)], and the
director modulation wavelength estimated by the helical
(1-8)"Y?-1 pitch p=m/qy>§&. There are two possibilities to alter this
— -1 (220 inequality—Dby increasing the penetration degtkeither by
making a weaker gel, or a less anisotropic)owoe by locally
Hence there is a continuous rotation of the director oriental"creéasing the director gradief¢.g., in the evernarrowing
tion towards the pitch axis as we slowly increase the electriéVist wall, Fig. 2. As the width of the twist wall decreases to

In contrast to conventional cholesteric liquid crystals, we

Si? =

voltage until saturation, zero, the I_:rank energy density grows aqd diverges at the
critical strain\ .. Therefore the local analysis of Ed8) and
w(rZ=1)(r—1) (9) is only valid outside the region of straid\~(gy&)?
Vs=dp T Reerz O Bs=1—-r"2% (23) around\.. In a typical hard nematic rubber this is a very
0

small deviation, not altering the conclusions drawn, but in a

at the point at whichd reachesr/2 and remains so, see Fig. €@k gel with low chain anisotropy it may become more
6, thereafter forv>V,. (i) When \ can relax to further substantial. Also, the actual finite width of the twist wall at
, s

lower the energy, we must return &nfrom Eq. (21) to the the transition, may raise the question of topological mecha-
energy expressic;CQO) ' nism for eliminating the twist stored in the cholesteric helix,
The dynamics of such disclination loop would require further
; (24 studies.
before minimizing ovei. The minimization cannot be car- elasticity to intervene in our analysis in a more substantial
ried out analytically in general, but in the limit of smgdl =~ Wa&V- When ¢{~p, for example, with a pitchp~4

perhaps by a disclination loop expansion in thg plane.
1 1 B
F’E=§/.L(2\/)\—ﬁ+ X-f— X2
One can estimate how weak a gel must be for the Frank

<1 it leads to siRfe=(28/r—1)+0(8?) with X107 m, then a rubber modulus of only~60 J/n? is
required (assuming[r —1]~1). Nematic elastomers typi-
Ne=1+8-282+0(8°%) and cally have u~10°—10° J/n? and their cholesteric analog
would clearly find Frank-elastic effects minor. However, an
Fe=1u[3-282+0(8%)]. elastomer with a reasonable~ 10> J/n? would feel the di-

rector gradients when its polymer chain anisotropy becomes
In both cases, clamped or free, shegys, are induced, see as low asr=/,//, ~1.25. Such a low value is often found
Eq. (15), which involve displacements perpendicular to the'" sidechain liquid crystal polymers, especially near the
electric field. Any residual dust particles will be displaced ¢l€aring poin{17]. The situation where Frank elasticity be-
and become tracers of mechanical deformations as in elect£OMes significant is complex. Qualitatively, in penalizing the

cal experiments on nematic gels n Fredericks geoniesy dirgctor gradient, the Frank elastic term vyill increascla'the
critical A in the case of transverse elongation and facilitate

We do not predict rotational effects of the director aboutthe conical formation for the case of stretching along the
the helix axis as suggested by Brd@8] (who was not con- pitch axis.
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To summarize, we have analyzed a qualitatively new ré=(i\,,/d2)-y that diverges as the linegrdimension of the
sponse of an elastomer with chiral cholesteric microstructurgamme_ We accordingly assert that the transverse contrac-
to applied fields that is different from classical cholestericijons areuniform Such deformations, e.gh,, and \,, for

liquids. Likewise, the chiral imprinting and its modification stretching along the helix axi have to be equal by sym-

by elastic fields is a new effect in rubbers and solids. Fur-metry and therefora,, =\, = 1/JX. In contrast, for stretch-

thermore, we have shown that one could modify these effects,y jorhendicular to the helix, the transverse contractigns
by the use of electric field that can give rise to new electro-(,ind)\yy should not be symmetric since one of them is along,

optical de\(ices. Other possibilitie; ","C'“de solvewsth or and the other perpendicular to, the coarse-grained principal
without chiral powey and magnetic fields. axis of a helixz.
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We would like to thank T. C. Lubensky and R. B. Meyer |t is unclear,a priori, whether the stretched elastomer
for useful discussions. would spontaneously undergo complex twists, reaching an
inhomogeneous state such as the blue pliaég Experi-
APPENDIX mentally[27], samples have been stretched perpendicular to
the helix axis, and no complex phase formation has been
observed. Below we test for two most obvious modes of
Generally, material deformations are finite and continuousnechanical modulations in response to an elongatiom-
lest we break the material. Therefore we require that thgosed along axis. The first,
displacement vectaur(r) should be a continuous function of

1. Mechanical compatibility

positionr, and it follows thatd;d;u,= d;d;uy, Whered ; y N @;0,C0S0yy cOSqz  — a;qsing,ysingz
represent partial differentiations with respectxg/ or z _
Since\ ;= d;uy, the equivalent constraint on the possible =
is B 0 0 ) -
(A4)
IiNkj= djNiis (A1)

which corresponds to a displacement vector w# (AX

we refer to these implicit constraints as compatibility re-+ a4 cosgzsingyy,\,y,\,2) with the modified pitch q
quirements. A simple case of incompatibility would be a=dg/\,;; note that\;;=d;u; . The second,
z-dependent rotation(z),

AN O 0
N —a(2) A Ao=| 0 Ay —ayqsingz |, (A5)
A= @@ Ny Ny (A2) 0 O A2z
)\ZX )\zy )\ZZ

corresponds to a displacement vector of (AX, Ay

To see the incompatibility, we consider the constraint on a, COSOZ\,,2). The first mode\ ; represents a modulated
Az, wave in the plane perpendicular to the pitch axis, and the

second mode corresponds to a simple modulation along the
(A3) pitch axis. To test their stability, we substitute the abai@

into the free-energy density, E(R), and numerically mini-

mize it with respect to the current director orientation, sub-
At a fixed positionz, the right—hand side is a constant inde- ject to the constant volume constraint d_et(: 1. Numerical
pendent ofy. Hence the integration would lead to divergent analysis shows that the minimized free energy is quadratic in
values of strain,, for y—oo. Therefore the proposed defor- 4, , with positivecoefficients. Any other form of mechanical

mation mode cannot occur. Physically, it corresponds to theerturbation can be tested for stability in this way, and so far
case of a small rotation creating a large displacement fafo instability has been found.

away from the rotation axis.

MNyz da(z)
ay oz

The argu_ment can I!I(_ewise be made with the sof_t ques. 3. Derivation of Eq. (10)
If the material at a positiom attempts a soft deformation, its o o ) _
director rotates towards theaxis. It is known that the elon-  Substituting the oscillating expression of tas Back into

gation \, contraction\,,, and shean,,, are precisely F, an_d coarse graining it over the helix,_we seek the optimal
determined by the initial orientatios,, and the rotation magnltude for the_ transverse contractions along the pitch
from it, if the process is to be soft. The next slab of material Azz» @nd in the azimuthal plark,,

atz+dz, has the initial orientatio,+ qodz and a different

set of soft straing must arise. Material points gttranslate d fﬁlzd(ﬁ £ o (A6)

to Ayy(2)-y and\(z+d2) -y in the two neighboring slabs a()\iy) 0 oL

along the helix, that is they differ by a relative displacement

(d\yyldz)dz-y. There is thus a generated sheay, which gives rise to

041803-7
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w

T a2
Ayyh

+$fﬂd¢o{[rsé<1+c2>—c3<1—c2)]
0

A
- —(r—l)socosz] =0, (A7)

)\yy

wherec, ands, are shorthand for cos2and sin 25. Sepa-
rating out thec, ands, terms, the rest can be trivially inte-

grated leading to
r—1 (=2
L2,
rJo

A
_)\_(r_l)socosz
yy

)

m (r+1)>2
n NN
Ay

4 r

(rsg"' CS)CZ

(A8)
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The integrand, after incorporating tag2ising

- __tn2
|C2|_\/1+tar122¢' =2 Ji+tarf 24

with appropriate signs, simplifies to

a[1+(r—1)s3]—2ra?

vai—4anag, (A9)
where
a;=rA\Z N~ (r=1)si(N2=27). (A10)
Equation(A8) then becomess
m(r+1)2 @  r—1 (=2
i I +— dg,g=0. (All)
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