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Cholesteric elastomers: Deformable photonic solids
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~Received 24 May 2001; published 24 September 2001!

A mechanical strain applied to a monodomain cholesteric elastomer modulates and eventually unwinds the
helical director distribution. There are similarities with the classical problem of an electric field applied to a
cholesteric liquid crystal, but also differences. Frank elasticity is of minor importance unless the gel is very
weak. The interplay is rather between the director being helically anchored to the rubber elastic matrix and the
external mechanical field. Stretching perpendicular to the helix axis induces the uniform unwound state via the
elimination of sharp, pinned twist walls above a critical strain. Below the critical strain the coarsening of the
director distribution is not accompanied by an increase but rather by an affine decrease in the pitch. Unwinding
through conical director states occurs when the elastomer is stretched along the helical axis. Finally we
consider cholesteric elastomers in a classical device geometry with an electric field applied along the pitch axis
and hence transverse to the director orientation.

DOI: 10.1103/PhysRevE.64.041803 PACS number~s!: 61.30.2v, 61.41.1e, 78.20.Ek
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I. INTRODUCTION

Monodomain cholesteric elastomers are formed
crosslinking mesogenic chiral polymers in the choleste
state with a properly formed helical director twist. The su
sequent retention of the helical state as an elastic equilibr
@1# is a natural topological consequence of textures conta
within the crosslinked network, seen in a number of oth
elastomers with liquid crystalline order and other microstr
ture. Symmetrical biaxial extension, applied to a sample fi
in the process of crosslinking, aligns the director uniform
in the film plane, and thus the cholesteric helix axis along
sample normal@2#. The more subtle imprinting route@3# to
achieving chiral elastomers without material of intrins
chirality have been demonstrated@4# and theoretically de-
scribed@5#.

Such elastomers combine all the optical properties
twisted nematic liquids with the remarkable mechani
characteristics of rubbers, and there are important device
plications such as color displays@6,7#, a chiral pump for
sorting racemic solvents@8#, memory storage@9# and even
lasing@10,11#. Thanks to the one dimensional~1D! photonic
gap arising from its helical structure, an elastomer laser
quires no mirrors to create a cavity and has a very low las
threshold. Furthermore, it exhibits strong optomechan
coupling, with the laser color depending sensitively on
strain applied. Such a mechanically tunable laser co
hugely benefit optical fiber communication. It is therefo
important to consider the mechanical possibilities of su
solids with a helical microstructure. We expect new tran
tions and instabilities characteristic of liquid crystalline ela
tomers@12#. There is some experimental evidence@2,13# that
such effects are indeed observable and our hope is that
theoretical work will stimulate more studies in this field.

II. MECHANICAL DEFORMATION

Consider a monodomain cholesteric elastomer with
ideal helically twisted directorn0(z) in the x-y plane, ini-
tially making anglef05q0z with thex axis, Fig. 1. We shall
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examine two specific cases of imposed uniaxial extension~i!
transverse deformationlxx5l, in the plane includingn0,
and ~ii ! longitudinal deformation along the helix axi
lzz5l.

The symmetry obvious from Fig. 1 requires that in t
case~i! the director remains in thex-y plane, characterized
by the azimuthal anglef(z), while in the case~ii ! one may
expect a conical texture withn(z) inclined towards the
stretching axisz and therefore described by two anglesu and
f ~cf. Fig. 4!. In ordinary liquid cholesterics subjected t
e.g., a magnetic fieldHz , such conical states are not gene
ally seen, preempted by the 90° switching of the helix a
and then untwisting in the ‘‘transverse’’ geometry@14,15#.
We shall see that in elastomers, due to the director anc
ing, this regime is not possible and the conical director c
figurations should occur.

An elastic material with a microstructure represented
an independently mobile director orientation is analogous
Cosserat media. In the limit of linear elasticity the relati
rotation coupling between the director rotationv5@n3dn#
and the antisymmetric part of strain,V i5e i jk« jk ~with sum-
mation convention!,

1
2 D1@n3~V2v!#21D2n•«== (s)

•@n3~V2v!#, ~1!

has been first written down phenomenologically by
Gennes@16#, «== (s) being the symmetric part of the small stra
defined as«==5l== 2d== . The deformation tensorl== is related to
the displacement vectoruI (rI ) via

l i j 5¹ jui ,

where subscriptsi and j refer tox, y, andz. The symmetry-
based expression~1! is only valid for small deformations
having only linear and quadratic terms in the local relat
rotation.

The microscopic statistical-mechanical theory of nema
rubber elasticity, summarized in Ref.@17#, obtains a frame-
independent generalization of the classical rubber-elastic
ergy density,
©2001 The American Physical Society03-1
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FIG. 1. The initial director
n0(z) in a cholesteric helix makes
an azimuthal anglef05q0z with
the x axis; the helical pitch isp
5p/q0. Two principal directions
of mechanical deformation,~a!
lxx and~b! lzz, are shown by ar-
rows.
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F5 1
2 m Tr~ l== 0•l== T

•l== 21
•l== !, ~2!

plus the constraint of material incompressibility, express
by the condition det(l)51, on the strain tensor. Apart from
the strain, the other entries in Eq.~2! are

l= 05 l'd==1~ l i2l '!n0n0 ,

l== 215~1/l '!d==1~1/l i21/l '!nn, ~3!

the reduced shape and inverse shape tensors characte
the Gaussian distribution of nematic polymer chains bef
and after the distortionl== . The rubber shear modulusm
5nskBT ~with ns the number density of network strand
proportional to the crosslink density! is that characteristic o
the underlying isotropic rubber and sets the energy scal
distortions. The free-energy density~2! is known to be valid
up to large strains and correctly predicts the optomechan
responses and the soft elasticity of nematic elastomers.
free-energyF is a function only of the chain anisotropyr
5l i /l ' , the ratio of the effective step lengths parallel a
perpendicular to the director. It is an independently measu
parameter accessible from neutron scattering or from sp
taneous mechanical distortions on going from the nemati
isotropic phase. Unless there is a large nematic order cha
induced byl== , the shapel== is essentially just a rotated versio
of l== 0, a uniaxial ellipsoid with the long axis~at r .1) ori-
ented alongn instead ofn0.

Embedded in the general expression~2! is the penalty for
local director deviations from the orientationn0 imprinted
into the network at formation. When no elastic strains
allowed,l== 5d== , this elastic energy reduces to

F5
3

2
m1

1

2
m

~r 21!2

r
sin2 Q, ~4!

whereQ is the local angle betweenn andn0. The sin2Q term
describes the anchoring towards the original director ori
tation. The elastic penalty for deviating from its original o
entation, appropriately proportional to the square of ch
anisotropy, gives the coefficientD1 of the de Gennes’ phe
nomenological expression at small deformations, Eq.~1!.
This has to be compared with the Frank elastic penalty
director curvature deformations,1

2 K(¹n)2. The length scale
j;(1/r 21)AK/m at which the two energy contributions a
comparable is usually small:j;1028 m for a typical K
;10211 J/m,m;105 J/m3 and not too small anisotropyr.
This is rather less than the cholesteric pitchp, which is a
characteristic scale in our problem. Therefore the ancho
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of the directorn to the rubbery matrix, described by Eq.~2!,
tends to dominate over Frank elasticity effects.

We shall assume that a cholesteric elastomer is loc
like a nematic in its elastic response: rubber elasticity is
termined on the scale of network crosslink separations~a few
nanometers!, whereas cholesteric pitches are 103 times
longer. We can at once see why the chiral structure is sta
but how mechanical fields can destabilize it. With no elas
strain, the free-energy penalty is; 1

2 D1(f2f0)2 for rotat-
ing the director away from its original helical texturef0
5q0z. On the other hand, if strains are applied, the rub
can lower its elastic energy~2! by rotating the directorn
towards the axis of principal extension. This general pr
ciple of adjusting the microstructure to minimize the elas
energy is seen in its ultimate form in the effect of soft ela
ticity @17,18#, when a stretched nematic rubber may redu
its effective modulus~the slope of a stress-strain curve! to
zero by optimizing the director rotation and associated sh
strains.

Distortions in a cholesteric elastomer cannot be soft,
cause of elastic compatibility constraints~see Sec. A of the
Appendix for more details! in matching different director
and shear modes along the helix. Essentially, the soft mo
depend on the director orientation,f0, which vary according
to position. This variation gives rise to a shearlyz that di-
verges as the lineary dimension of the sample. We accord
ingly take transverse contractions to beuniform. Such defor-
mations, e.g.,lxx andlyy for stretching along the helix axis
z, have to be equal by symmetry and thereforelxx5lyy

51/Al, the classical forms. In contrast, for stretching pe
pendicular to the helix, the transverse contractionslzz and
lyy should not be symmetric since one of them is along a
the other perpendicular to the coarse-grained principal a
of the helix,z. Indeed, we shall find nonclassical exponen
of 2/7 and 5/7 for these relaxations. The incompressibi
constraint maintains the relationlzzlyy51/l.

III. TRANSVERSE ELONGATION

We first consider an imposed stretch in the transverse
rection perpendicular to the pitch axis,lxx5l. The strain
tensor is then in the following form:

l== 5S l 0 0

0 lyy 0

0 0 lzz

D . ~5!

Although one expects the director rotation in the azimut
planex-y ~cf. Fig. 1!, there are no associated shear strai
3-2
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Such shears,lxy(z) and lyx(z), would both lead to elastic
compatibility problems, see the Appendix, and we assu
they are suppressed. The shearslxz(z) and lxz(z) are not
subject to compatibility requirements. However, they sho
not appear on symmetry grounds, which is easily confirm
by direct minimization. Nown05$cosf0,sinf0,0% and the
rotated director after deformation isn5$cosf,sinf,0%. Note
that the helix isf05q0z in the initial undistorted material
After deformation, because of the uniform affine contract
lzz, the material frame shrinks and the effective helical pi
becomesq̃5q0 /lzz in all expressions below. Thel== 0 and l==
implied by thesen0 andn via equation~3!, take the forms

l== 05S l's0
21 l ic0

2 ~ l i2 l'! s0c0 0

~ l i2 l'!s0c0 l is0
21 l'c0

2 0

0 0 l'
D ~6!

and

l== 215S l'
21s21 l i

21c2 ~ l i
212 l'

21!sc 0

~ l i
212 l'

21!sc li
21s21 l'

21c2 0

0 0 l'
21
D , ~7!

wherec0 and s0 are shorthand for cosf0 and sinf0; analo-
gously,c ands stand for cosf and sinf. Substitution of the
above three equations into the free-energy density~2! then
yields

F'5
1

2
mS l21lyy

2 1lzz
2 1

r 21

r
@l2~r c0

2s22c2s0
2!

1lyy
2 ~r c2s0

22s2c0
2!22l lyy~r 21!s0c0sc# D . ~8!

The appearance of terms linear and quadratic inf ~or rather
in sinf because all values of the azimuthal angle will
found along the cholesteric helix! indicate that rotations can
always lower the energy forlÞ1. Incompressibility requires
lyylzz51/l. Minimization of F' with respect to the curren
director orientationf results in the expression for the loc
director anglef(z) at a given imposed extensionl depend-
ing on the initial phase of cholesteric helixf0,

tan 2f5
2llyy~r 21!sin 2f0

~r 21!~l21lyy
2 !cos 2f01~r 11!~l22lyy

2 !
.

~9!

Substituting this director profile intoF' gives the free-
energy density after director rotation. The total free ene
then needs to be optimized with respect to the transv
contractionlyy . This leads to
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~r 11!2

r
2

p

lyy
4 l2

1
r 21

r E
0

p/2

dfog50, ~10!

where details of the derivation and the definition ofg have
been relegated to Sec. C of the Appendix. Equation~10! can
now be solved numerically, and the solution of optimallyy

is plotted in Fig. 2~a!. This variation is contrasted with two
classical regimes—an isotropic 3D contraction;1/Al and
its 2D equivalent;1/l ~corresponding to a frozenlzz51).
From the plot it is apparent that a good fit is achieved b
power lawlyy.l23/4 ~and, as a consequence,lzz.l21/4),
for the imposed strainl below the critical valuelc.r 2/7,
when a discontinuous jump in the distribution of direct
angles occurs, see Fig. 2~b! and also the kink inlyy(l), Fig.
2~a!. The critical valuelc.r 2/7 can be estimated by settin
the denominator in equation~9! to zero and takinglyy

.l23/4. In fact, a small strain expansion~in l21!1) can
be made, and it can be shown analytically@19# that the re-
laxation initially varies aslyy.l25/7 andlzz.l22/7.

Initially, all directors at 0,q̃z,p/2 ~first helical half-
turn! are induced to rotate ‘‘backward’’ towardsf50, and
all directors at2p/2,q̃z,0 ~second helical half-turn! ro-
tate ‘‘forward’’ towardsf5p, as the imposed deformatio
l increases, see Fig. 2~b!. Although f50 andp describe
equivalent directors, the twist wall separating these t
states becomes sharper and sharper. Due to the helix imp
ing, the orientationsf50 at q̃z50 andf5p at q̃z5p are
pinned, as is the middle point of the twist wall atq̃z5p/2.
As a result, no change of the helical pitch apart from t
affine contractionq̃5q0 /lzz can occur. This is in contras
with cholesteric liquid crystals, where in a classical proble
of helix unwinding by electric or magnetic field one finds a
increase in cholesteric pitch@14,15# along with coarsening of
the helix.

FIG. 2. ~a! The transverse contractionlyy as a function of im-
posedlxx5l. Solid line shows the exact numerical solution of th
coarse-graining problem forr 51.9; one can see the kink where th
discontinuous transition atlc5r 2/7'1.2 takes place. The dashe
line is an interpolation bylyy5l23/4, two thin lines show classica
regimes oflyy51/Al and 1/l. ~b! The director anglef against the
cholesteric helix phaseq0z for increasing strainl51 ~open circle!,
1.15 ~triangle!, 1.23 ~open square!, 1.25 ~shaded square!, and 1.5
~shaded circle!. At l>lc the director pinning atf5p/2 breaks
down and a discontinuous transition occurs, after which the dire
continuously rotates towards the final uniformf50.
3-3
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Examining Eq.~9!, one finds that as the increasing a
plied strain reaches a critical valuelc , the width of the twist
wall, centered atq̃z5p/2 between the valuesf5p/4 and
3p/4, decreases to zero and the discontinuous tra
tion occurs. The director in the midpoint of the wall brea
away from the pinning and jumps fromf5p/2 to f50,
along the strain axis, thus removing the topologically co
strained twist wall. From this point there is no barrier f
director rotation towards the final uniform orientation wi
f50, as the last two curves in Fig. 2~b! indicate. The role of
Frank elasticity is discussed at the end.

A discontinuous director jump at a critical strain has be
predicted, and indeed observed in nematic elastom
stretched at exactly 90° to their initial directorn0 @17,20#. In
a stretched cholesteric, one always finds an exact phase a
f5p/2 along the helix—where the center of narrowin
twist wall becomes pinned from both sides. It is this po
that experiences a discontinuous jump. Thuslc is an upper
bound on the stability and the transition. The point of equ
ity of the free energies of the system with and without tw
walls occur at a slightly lowerl,lc .

The corresponding stress-strainsxx(l) relations can be
obtained by differentiating the energy, Eq.~8!, with respect
to l, and the results are plotted in Fig. 3. We can see that
stress exhibits a dip corresponding to the kink in the tra
verse relaxation. If a controlled-stress device is used,
material will undergo a sudden jump in length atl5lc .
This mechanical instability would be accompanied by
discontinuous jump in the nematic director orientatio
which could be monitored optically.

There exists of course intrinsically chiral-elastic couplin
such as terms of the typeAn•«== (s)

•@¹3n#, introduced by
Terentjev @21#, Eq. ~5!. These involvederivativesof the

FIG. 3. The nominal stress vs strain relation for a transve
elongation,r 51.3 ~dashed line! and r 51.9 ~solid line!.
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nematic director and are therefore smaller by at leas
factor of q0a;1024, wherea is a molecular length of the
order of Å.

IV. STRETCHING ALONG THE PITCH AXIS

Having considered the material response under a str
perpendicular to the helical axis, we now turn our atte
tion to the case of~cf. Fig. 1! an imposed stretch along th
helical pitch axis,lzz5l. The deformation tensor takes th
form of

l== 5S 1/Al 0 lxz

0 1/Al lyz

0 0 l
D . ~11!

No compatibility problem with shearslxz(z) and lyz(z)
arises from their variation withz along the helical pitch.
By contrast, their conjugate strainslzx and lzy , which
would also have to vary withz, lead to a serious compatibil
ity mismatch, e.g.,]lzx /]z5]lzz/]x. We therefore deduce
thatlzx andlzy are suppressed even though in other setti
@17# these are the generators of soft elastic response. C
ceivably,lxy andlyx could exist, but that seems unlikely a
numerical tests would suggest~see Section B of the Appen
dix!.

In this geometry one expects the director to rotate byu
out of the azimuthalx-y plane, see Fig. 4~a!. The initial
director orientation is, as before,n05$cosq 0z,sinq 0z,0%,
while after deformation the rotated director is aligned alo
the surface of a cone:n5$cosu cosq̃z,cosu sinq̃z,sinu%. As
in the case of a transverse stretch~previous section!, all
physical dimensions in the deformed sample are scaled
the affine strain. In particular, herez→lz, resulting in the
corresponding expansion of the cholesteric pitch,q̃5q0 /l.
With the l== 0 and l== defined by the axesn0 and n, the free-
energy density~2! now becomes a function of three var
ables: the director tilt angleu and the two shear strain
lxz(z) andlyz(z) ~we continue to neglect the effects of d
rector gradients and Frank elasticity!. Algebraic minimiza-
tion over these components of strain tensor is not diffic
Without loss of generality, we takeq0z5q̃z50 ~all other
values ofq0z are related by rotational symmetry!, then we
have

l== 05S l i 0 0

0 l ' 0

0 0 l '
D ~12!

and

e

l== 215S l '
21 sin2 u1l i

21 cos2 u 0 ~ l i
212l '

21!sinu cosu

0 l '
21 0

~ l |i
212l '

21!sinu cosu 0 l i
21 sin2 u1l '

21 cos2 u
D , ~13!
3-4
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giving rise to a free-energy density

F i5
1

2
mF r sin2 u1cos2 u11

l
1l2S 1

r
sin2 u1cos2 u D1lyz

2

12lxzlS 1

r
21D sinu cosu1lxz

2 S sin2u1
1

r
cos2u D G .

~14!

Optimizing for the shearslxz andlyz gives

lxz5l
~r 21!sin 2u

~r 11!2~r 21!cos 2u
, lyz50.

This represents a strain made up of displacements in
direction ofn projected into thex-y plane and varying with
z. Generalizing to theq0zÞ0 case, we have

S lxz

lyz
D 5

l

2

~r 21!sin 2u

r 112~r 21!cos 2u S cosq̃z

sinq̃z
D , ~15!

in phase with the azimuthal angle along the helical pit
Equation~15! describes thez variation of distortions within
the x-y plane in the direction of the initial directorn0 and
perpendicular to the helix axis. On substitution of these
timal shears back into the free-energy density one obtain

F i5
1

2
mS l2

11~r 21!sin2 u
1

21~r 21!sin2 u

l D . ~16!

F i expands at small tilt angleu as

F i'
1
2 m~l212/l!2 1

2 m u2~r 21!~l221/l!, ~17!

that is, the director starts to rotate down to define a cone
semianglep/22u immediately as the strainl.1 is im-
posed. The equilibrium director tilt is obtained by minimiz
tion of the full free-energy densityF i(u),

sin2 u5
l3/221

r 21
, u5arcsinAl3/221

r 21
. ~18!

FIG. 4. ~a! The geometry of director rotation in response
stretchinglzz along the helix axis.~b! The angleu of director tilt
plotted against the imposed strainl, Eq. ~18!, for r 51.3 ~triangle!
and r 51.9 ~circle!. Strain varies from 1 tol25r 2/3 at which point
the alignment isu5p/2, uniformly along the former pitch axis.
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The director rotation starts and ends in a characteristic
singular fashion, Fig. 4~b! ~reminiscent of the universal op
tomechanical response seen in soft nematic elastomers@22#!.
The rotation is complete, with the director aligned along t
extension axis (u5p/2) at l5r 2/3, which for some elas-
tomers, can be a very large extension.

The corresponding stress-strain plots are shown in Fig
The material hardens significantly after reachingl2, which
reflects the fact that the material no longer has the freedom
rotate its director in its attempt to lower free energy.

V. EFFECT OF AN AXIAL ELECTRIC FIELD

It has been reported that an electric field applied along
pitch axis can have a similar effect of reorienting the direc
towards the pitch axis; a history-dependent critical field
required and this effect can be utilized to make data stor
media @9#. Moreover, the recovered (E50) state is mon-
odomain, in contrast to those commonly found for liqu
cholesterics. This is also an easily accessible experime
geometry, since the initial director is in the plane of a fl
sample film, with the helical axis and the applied field alo
the sample normal. An electric voltageV, applied across the
sample of thicknessd5ld0, adds an extra term to the free
energy equation~16!,

FE52
1

2
Dee0

V2

l2d0
2 sin2 u, ~19!

whereDe is the differential dielectric constant. So we hav

F i ,E5
1

2
mS l2

11~r 21!sin2u
1

21~r 21!sin2 u

l D
2

1

2
Dee0

V2

l2d0
2 sin2 u. ~20!

It is clear that the electric field alters the coefficient of t
sin2u term, and the tilt angle after minimizing the free ener
is now

FIG. 5. The nominal stress vs strain relation for a stretch alo
the pitch axis,r 51.3 ~dashed line! and r 51.9 ~solid line!.
3-5
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FIG. 6. A cholesteric elas-
tomer in an electric optic device
geometry. Director orientation
sin2u is shown as a function of an
isotropy r and reduced electric
field b. The reduced electric field
required to completeu rotation to
p/2 is given bybs512r 22.
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sin2u5
Al4/~l2b!21

r 21
, ~21!

with b5(Dee0V2)/(r 21)md0
2 andl is to be determined by

boundary and minimization conditions. If no field is applie
b50, we retrieve equation~18! of the previous section. The
dimensionlessb measures the effect of an applied elect
field in units of the nematic anisotropy energy, (r 21)m.

We discuss the two following cases: a clamped elasto
wherel5lzz51 is enforced, and a free-standing elastom
where electrodes are painted on andl can relax.

~i! In the clamped case, there is no deformation,l51, we
have

sin2 u5
~12b!21/221

r 21
. ~22!

Hence there is a continuous rotation of the director orien
tion towards the pitch axis as we slowly increase the elec
voltage until saturation,

Vs5d0Am~r 221!~r 21!

Dee0r 2 or bs512r 22, ~23!

at the point at whichu reachesp/2 and remains so, see Fig
6, thereafter forV.Vs . ~ii ! When l can relax to further
lower the energy, we must return sin2u from Eq. ~21! to the
energy expression~20!,

F i ,E5
1

2
mS 2Al2b1

1

l
1

b

l2D , ~24!

before minimizing overl. The minimization cannot be car
ried out analytically in general, but in the limit of smallb
!1 it leads to sin2uE5(2b/r21)1O(b2) with

lE511b22b21O~b3! and

FE5 1
2 m@322b21O~b3!#.

In both cases, clamped or free, shearsln0z are induced, see
Eq. ~15!, which involve displacements perpendicular to t
electric field. Any residual dust particles will be displac
and become tracers of mechanical deformations as in ele
cal experiments on nematic gels n Fredericks geometry@25#.

We do not predict rotational effects of the director abo
the helix axis as suggested by Brand@23# ~who was not con-
04180
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er
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cerned with the rotatory-mechanical effects of our ear
section! for reasons that have been explored by Refs.@21,24#.

VI. DISCUSSION

In contrast to conventional cholesteric liquid crystals, w
have altogether ignored effects of Frank elastic energy.
most compelling evidence for this is the very stability of t
imprinted helical state in the face of the Frank pena
1
2 K2q0

2. The argument for this relies upon the great diffe
ence in characteristic length scales, the elastomer penetr
depth, more accurately expressed asj @cf. Eq. ~4!#, and the
director modulation wavelength estimated by the heli
pitch p5p/q0@j. There are two possibilities to alter thi
inequality—by increasing the penetration depthj ~either by
making a weaker gel, or a less anisotropic one!, or by locally
increasing the director gradient~e.g., in the evernarrowing
twist wall, Fig. 2!. As the width of the twist wall decreases t
zero, the Frank energy density grows and diverges at
critical strainlc . Therefore the local analysis of Eqs.~8! and
~9! is only valid outside the region of strainDl;(q0j)2

aroundlc . In a typical hard nematic rubber this is a ve
small deviation, not altering the conclusions drawn, but in
weak gel with low chain anisotropy it may become mo
substantial. Also, the actual finite width of the twist wall
the transition, may raise the question of topological mec
nism for eliminating the twist stored in the cholesteric hel
perhaps by a disclination loop expansion in thex-y plane.
The dynamics of such disclination loop would require furth
studies.

One can estimate how weak a gel must be for the Fr
elasticity to intervene in our analysis in a more substan
way. When j;p, for example, with a pitch p;4
31027 m, then a rubber modulus of onlym;60 J/m3 is
required ~assuming@r 21#;1). Nematic elastomers typi
cally havem;1032105 J/m3 and their cholesteric analo
would clearly find Frank-elastic effects minor. However,
elastomer with a reasonablem;103 J/m3 would feel the di-
rector gradients when its polymer chain anisotropy becom
as low asr 5l i /l ';1.25. Such a low value is often foun
in sidechain liquid crystal polymers, especially near t
clearing point@17#. The situation where Frank elasticity be
comes significant is complex. Qualitatively, in penalizing t
director gradient, the Frank elastic term will increase t
critical lc in the case of transverse elongation and facilit
the conical formation for the case of stretching along
pitch axis.
3-6
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To summarize, we have analyzed a qualitatively new
sponse of an elastomer with chiral cholesteric microstruc
to applied fields that is different from classical choleste
liquids. Likewise, the chiral imprinting and its modificatio
by elastic fields is a new effect in rubbers and solids. F
thermore, we have shown that one could modify these eff
by the use of electric field that can give rise to new elect
optical devices. Other possibilities include solvents~with or
without chiral power! and magnetic fields.
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APPENDIX

1. Mechanical compatibility

Generally, material deformations are finite and continuo
lest we break the material. Therefore we require that
displacement vectoruI (rI ) should be a continuous function o
position rI , and it follows that] i] juk5] j] iuk , where] i , j ,k
represent partial differentiations with respect tox,y or z.
Sincelk j5] juk , the equivalent constraint on the possiblel==
is

] ilk j5] jlki ; ~A1!

we refer to these implicit constraints as compatibility r
quirements. A simple case of incompatibility would be
z-dependent rotationa(z),

l== 15S l 2a~z! lxz

a~z! lyy lyz

lzx lzy lzz

D . ~A2!

To see the incompatibility, we consider the constraint
lxz ,

]lxz

]y
52

]a~z!

]z
. ~A3!

At a fixed positionz, the right-hand side is a constant ind
pendent ofy. Hence the integration would lead to diverge
values of strainlxz for y→`. Therefore the proposed defo
mation mode cannot occur. Physically, it corresponds to
case of a small rotation creating a large displacement
away from the rotation axis.

The argument can likewise be made with the soft mod
If the material at a positionz attempts a soft deformation, it
director rotates towards thex axis. It is known that the elon
gation lxx , contractionlyy , and shearlxy , are precisely
determined by the initial orientationf0, and the rotation
from it, if the process is to be soft. The next slab of mater
at z1dz, has the initial orientationf01q0dz and a different
set of soft strainsl== must arise. Material points aty translate
to lyy(z)•y andlyy(z1dz)•y in the two neighboring slabs
along the helix, that is they differ by a relative displaceme
(]lyy /]z)dz•y. There is thus a generated shearlyz
04180
-
re
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ts
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t
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t

5(]lyy/]z)•y that diverges as the lineary dimension of the
sample. We accordingly assert that the transverse con
tions areuniform. Such deformations, e.g.,lxx and lyy for
stretching along the helix axisz, have to be equal by sym
metry and thereforelxx5lyy51/Al. In contrast, for stretch-
ing perpendicular to the helix, the transverse contractionslzz
andlyy should not be symmetric since one of them is alon
and the other perpendicular to, the coarse-grained princ
axis of a helixz.

2. Mechanical stability

It is unclear,a priori, whether the stretched elastom
would spontaneously undergo complex twists, reaching
inhomogeneous state such as the blue phase@26#. Experi-
mentally @27#, samples have been stretched perpendicula
the helix axis, and no complex phase formation has b
observed. Below we test for two most obvious modes
mechanical modulations in response to an elongationl im-
posed alongx axis. The first,

l= 15S l a1qy cosqyy cosq̃z 2a1q̃ sinqyysinq̃z

0 lyy 0

0 0 lzz

D ,

~A4!

which corresponds to a displacement vector ofu=5(lx

1a1 cosqzsinqyy,lyyy,lzzz) with the modified pitch q̃
5q0 /lzz; note thatl i j 5] jui . The second,

l== 25S l 0 0

0 lyy 2a2q̃sinq̃z

0 0 lzz

D , ~A5!

corresponds to a displacement vector ofuI 5(lx,lyyy

1a2 cosq̃z,lzzz). The first model== 1 represents a modulate
wave in the plane perpendicular to the pitch axis, and
second mode corresponds to a simple modulation along
pitch axis. To test their stability, we substitute the abovel== ’s
into the free-energy density, Eq.~2!, and numerically mini-
mize it with respect to the current director orientation, su
ject to the constant volume constraint det(l== )51. Numerical
analysis shows that the minimized free energy is quadrati
a1,2 with positivecoefficients. Any other form of mechanica
perturbation can be tested for stability in this way, and so
no instability has been found.

3. Derivation of Eq. „10…

Substituting the oscillating expression of tan 2f back into
F' and coarse graining it over the helix, we seek the optim
magnitude for the transverse contractions along the p
lzz, and in the azimuthal planelyy

]

]~lyy
2 !
E

0

p/2

dfoF'50, ~A6!

which gives rise to
3-7
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p2
p

lyy
4 l2

1
r 21

r E
0

p/2

dfoH @rs0
2~11c2!2c0

2~12c2!#

2
l

lyy
~r 21!socos2J 50, ~A7!

wherec2 ands2 are shorthand for cos 2f and sin 2f. Sepa-
rating out thec2 ands2 terms, the rest can be trivially inte
grated leading to

p

4

~r 11!2

r
2

p

lyy
4 l2

1
r 21

r E
0

p/2

dfoF ~rs0
21c0

2!c2

2
l

lyy
~r 21!s0c0s2G

50. ~A8!
un

t.

y-

s.

04180
The integrand, after incorporating tan 2f using

uc2u5
1

A11tan2 2f
, us2u5

tan 2f

A11tan2 2f

with appropriate signs, simplifies to

g52
a1@11~r 21!s0

2#22rl2

Aa1
224rl2lyy

2
, ~A9!

where

a15rl21lyy
2 2~r 21!s0

2~l22lyy
2 !. ~A10!

Equation~A8! then becomess

p

4

~r 11!2

r
2

p

lyy
4 l2

1
r 21

r E
0

p/2

dfog50. ~A11!
J.
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